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ABSTRACT
In nature, fructans are synthesized from sucrose by various microbial and plant species. Depending on the source,
fructans can contain from two to more than a hundred thousand fructose units linked by β-(2→1) (inulin-type) or β-
(2→6) (levan-type) glycosidic bonds. Bacteria produce levan or inulin polymers via a one-enzyme process aimed to
confer competitiveness in the interaction with the host plant or animal, protection against abiotic and biotic stress,
and a circumstantial energy source. Plant fructans are shorter and have diverse structures. They are synthesized in
the cell vacuoles as reserve carbohydrates by the concerted action of at least two enzymes with distinct substrate
specificities. Plant fructosyltransferases evolved from vacuolar invertases, a process likely connected with the inde-
pendent adaptation of unrelated families to cold and arid environments. Fructans of short and medium sizes are
prebiotics with increasing demand in the functional food market. Large polyfructans also have potential applica-
tions in the non-food industry. Current production systems are restricted either to the recovery of linear inulin stored
in the roots of the low-yielding chicory plant or to the more costly industrial conversion of sucrose into
fructooligosaccharides using immobilized fungal enzymes. The introduction of the appropriate fructosyltransferase
genes in agro-industrial productive crops that naturally store high concentrations of sucrose, such as sugar beet or
sugar cane, offers a plausible alternative to produce different types of fructans at lower production costs.
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RESUMEN
Fructanos: producción natural y plantas transgénicas. En la naturaleza, la síntesis de fructanos ocurre a partir
del sustrato sacarosa en varias especies de microorganismos y plantas. Los fructanos pueden tener desde dos hasta
cientos de miles de residuos de fructosa unidos por enlaces β-(2→1) (inulina) o β-(2→6) (levana). Los fructanos
vegetales son de menor tamaño y en ocasiones de mayor complejidad estructural que las levanas e inulinas
bacterianas. En bacterias, una sola enzima (levanasacarasa o inulosacarasa) cataliza las reacciones de
transfructosilación de la sacarosa y polimerización del fructano. En plantas, este proceso requiere de la acción de al
menos dos fructosiltransferasas con diferente especificidad de sustrato que evolucionaron a partir de las invertasas.
Los fructanos vegetales se sintetizan y acumulan en las vacuolas como carbohidratos de reserva, y se les relaciona
con la adaptación a ambientes fríos y áridos. Desde el punto de vista comercial, los fructanos son prebióticos y
presenta una demanda creciente en el mercado de alimentos funcionales. Los actuales sistemas de producción
están restringidos a la obtención de inulina a partir de raíces de achicoria y la conversión industrial de sacarosa en
fructooligosacáridos con el empleo de enzimas de hongos. La introducción individual o combinada de genes de
fructosiltransferasas en cultivos de alta productividad agro-industrial y que de forma natural acumulen altas
concentraciones del sustrato sacarosa, como la remolacha azucarera o la caña de azúcar, ofrece una alternativa
menos costosa para la producción de diferentes tipos de fructanos con interés comercial.
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Introduction
Fructans are sucrose-derived sugars consisting of
several fructose units and a common glucose residue.
Fructan synthesis occurs in a wide spectrum of bacte-
ria of differing physiologies, a limited number of fungi
and about 15% of flowering plant species belonging
to selected families of both monocots and dicots.
Fructans of distinct origin can differ by the degree of
polymerization (DP), the presence of branches, the
type of linkage between adjacent fructose units, and
the position of the glucose residue. Microbial fructans
have protective and temporally energetic functions.
In plants, fructans are used as reserve carbohydrates
and are likely involved in the adaptation of unrelated
families to cold and arid environments.

Bacterial levansucrases (EC 2.4.1.10) and
inulosucrases (EC 2.4.1.9) convert sucrose into high
DP fructans with a predominance of either β-(2→6)
linkages (levan) or β-(2→1) linkages (inulin). Fungi

synthesize linear β-(2→1) linked fructans, with a
predominant occurrence of fructooligosaccharides
(FOS) of DP 3-10. Unlike bacteria and fungi, plants
synthesize fructans by the concerted action of two
or more enzymes exhibiting distinct specificities
for the fructosyl-donor and fructosyl-acceptor
substrates.  The enzyme sucrose:sucrose 1-
fructosyltransferase (1-SST) initiates fructan
synthesis by producing the intermediary 1-kestose
from two sucrose molecules, with the consequent
release of glucose. Depending on the plant species,
the fructan stored is synthesized by the sole or
combined action of the enzymes fructan:fructan 1-
fructosyltransferase (1-FFT), fructan:fructan 6G-
fructosyltransferase (6G-FFT) and sucrose:fructan
6-fructosyltransferase (6-SFT) (for review see [1]).

Fructans have several potential applications in the
food and non food industries, but they are especially

1. Ritsema T, Smeekens S. Engineering
fructan metabolism in plants. J Plant Physiol
2003;160:811-20
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attractive because of their health-promoting effect as
prebiotics. A prebiotic can be defined as a nondigestible
food ingredient that beneficially affects the host by
selectively stimulating the growth and/or activity of
one or a limited number of bacteria in the colon, thus
improving host health [2]. The commercially available
fructans (FOS and inulin) are the typical examples of
prebiotics for bifidobacteria, the predominant group
of the colonic microflora. The selective increase in the
number of bifidobacteria and lactobacilli in the human
and animal large intestine due to the ingestion of
fructans confer several benefits to their host, such as
the competitive exclusion of intestinal pathogens, the
reduction of serum cholesterol, an increase in calcium
and magnesium absorption, the prevention of colon
cancer, and the production of B-vitamins (for review,
see [3]).

At present, FOS are produced at an industrial-scale
from sucrose using immobilized fungal cells. Inulin is
recovered from chicory roots with relatively poor
yields and frequently deteriorated quality due to
endogenous degradation during and after harvest. In
both commercial processes production costs are high,
hindering the large-scale use of fructans. Novel
attempts to achieve more cost-effective productions
of fructans are focused on the use of transgenic plants.

Structure and origin
The term fructan comprises both oligosaccharides and
polysaccharides that mainly have fructose residues.
Fructans synthesized in nature are water-soluble and
non-reducing sugars in which from one up to more than
a hundred thousand fructose units are attached to the
precursor sucrose molecule. The addition of one
fructosyl residue to sucrose produces 1-kestose
(G1↔2F1←2F), 6-kestose (G1 ↔2F6←2F) or
neokestose (F2→6G1↔2F) (Figure 1). The successive
enlargement of the trisaccharide by one or more types
of linkages results in the formation of linear or branched
polyfructans, respectively. Fructans are classified
depending on the predominant linkage type and chain
size. Inulin-type fructans contain mostly or exclusively
β-(2→1) fructosyl-fructose linkages, whereas levan-
type fructans are β-(2→6) linked molecules with the
occasional presence, or not, of β-(2→1) bonds. Fructans
with degrees of polymerization (DP) from 2 to 10 are
commonly known as FOS (fructooligosaccharides) [4].

Fructan synthesis occurs in a broad range of
microorganisms of differing physiologies and a limited
number of plant species mainly in temperate and arid
climates. Many Gram-positive and Gram-negative
bacteria produce levan, while inulin synthesis has been
reported so far only in the Gram-positive species
Streptococcus mutans, Lactobacillus reuteri and
Leuconostoc citreum. Bacterial levan and inulin are
the largest fructans in nature, with a DP ranging from
104 to 106. Fungal species that produce fructans are
basically included in the genera Aspergillus,
Aureobasidium, Penicillium, Fusarium, Pestalotiopsis,
Myrothecium, Trichoderma, and Phytophthora. Fungal
fructans consist of a linear β-(2→1) linked chain, with
the predominant occurrence of FOS. Chain size can
vary between species in the same genus. For instance,
Aspergillus sydawi converts sucrose into inulin with a
DP above 30, whereas A. niger, A. phoenicis, A.

foetidus, and A. oryzae produce a mixture of FOS
containing 3 to 8 monosaccharide units [5-8].

In plants, fructans are synthesized and stored in
the vacuole of about 15% of flowering species,
including dicotyledons and monocotyledons. Dicot
plants (family Asteraceae) synthesize linear inulin
consisting of one terminal glucose residue and a varia-
ble number of fructose residues exclusively linked by
β-(2→1) bonds. The chain length of the inulin
deposited in storage organs varies between species.
The inulin stored in chicory (Cichorium intybus)
taproots and Jerusalem artichoke (Helianthus
tuberosus) tubers has a rather low mean DP of about
10 to 30. The highest DP inulin in Asteraceae has been
found in globe artichoke (Cynara scolymus) roots
reaching up to 200 fructose residues [9, 10]. Monocot
plants (families Poaceae, Alliaceae, Asparagaceae,
Agavaceae, Amaryllidaceae, Haemodoraceae, and
Iridaceae) produce more complex fructans. Temperate
grasses (Poaceae) form structures that vary from li-

Figure 1. Structural representation of three kestrioses containing all the disaccharide linkages found in natural
polyfructans. A) 1-Kestose [O-β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside],
B) 6-Kestose [O-β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside], and C)
Neokestose [O-β-D-fructofuranosyl-(2→6)-α-D-glucopyranosyl-(1↔2)-β-D-fructofuranoside].
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near levan, referred to as phlein, for instance in big
bluegrass (Poa secunda) [11, 12], to highly branched
levan having both β-(2→6) and β-(2→1) fructosyl-
fructose linkages, referred to as graminan, for instance
in wheat (Triticum aestivum) and barley (Hordeum
vulgare) [13]. Graminans may also contain an
oligoinulin chain attached to the C6 of the glucosyl
residue of sucrose, for instance in oat (Avena sativa),
tall fescue (Festuca arundinacea) and Lolium species
[14-16]. The members of Alliaceae and Asparagaceae,
for instance onion (Allium cepa ) and asparagus
(Asparagus officinalis), produce inulin neoseries, also
referred to as neoinulins, consisting of two linear β-
(2→1) linked fructosyl chains, one attached to the
fructose residue of the sucrose starter, the other
attached to the glucose residue at the C6 position [17,
18]. In Agavaceae diverse fructan structures have been
reported. Inulin was identified as the principal reser-
ve carbohydrate in Agave americana. The stems of
Agave vera cruz and Agave tequilana store a complex
mixture of fructooligosaccharides, inulins, neoinulins,
and branched fructans containing both β-(2→1) and
β-(2→6) fructosyl-fructose linkages [19, 20].

Function in nature
Bacterial fructans are present as part of extracellular
polysaccharides, having specific habitat-related
functions and occasionally serving as energy reserves.
For instance, inulin and levan produced by oral
streptococci are involved in the adherence of bacteria
between themselves and to the tooth surface,
contributing to the formation of dental plaques and
cavities [21, 22]. Levan is a barrier to plant recognition
and prevents a defense response during the early phase
of infection of pathogens Erwinia amylovora and
Pseudomonas syringae [23, 24]. Levan produced by
Paenibacillus polymyxa is involved in the aggregation
of root-adhering soil on wheat [25]. Alternatively,
fructans may protect microbial cells against abiotic
and biotic stress, such as: desiccation, freezing,
antibiotics or toxic compounds, and attacks of
parasites and predators.

In plants, fructans are used as reserve carbohydrates
and, in that respect, they work much like starch and
sucrose. In contrast to starch, which is stored in the
plastids, fructans are synthesized, stored and
hydrolyzed in cell vacuoles. Fructans accumulate
during growth if carbon production exceeds demands
and are mobilized when energy is needed. For instance,
fructans are hydrolyzed during the regrowth of leaves
and for sprouting after defoliation and winter
dormancy [26, 27]. Fructan degradation has also been
associated with petal expansion in the flowers of
Hemerocallis [28] and Campanula rapunculoides [29].
There is strong evidence that fructans protect the plant
against drought and freezing [30, 31], most likely by
stabilizing cell membranes [32, 33].

Applications
Fructans have applications in the food, nutraceuticals
and non-food industries. Different size fructans
potentially have different uses. However, only FOS
and inulin are currently produced at a commercial scale.
These fructans are marketed under the category of
functional foods with an increasing demand in

developed countries. By concept, functional foods
have an added health value above their nutritional
properties [34].

Fructans are considered the typical representative
of prebiotics, with a proven bifidogenic effect in
animals and humans. These sugars have a low caloric
value and dietary fiber-like properties, due to the
fact that the β -fructosyl linkages can not be
hydrolyzed by the digestive enzymes in the upper
part of the human gastrointestinal track. Once in the
colon, fructans are selectively metabolized by
resident bacteria that produce β-fructofuranosidases,
including bifidobacteria and lactobacilli, main
representatives of the beneficial colonic microflora.
The proliferation of healthy bacteria in the gut results
in the competitive exclusion of pathogens, such as
Escherichia coli, Clostridium sp. and Salmonella sp.
The release of short-chain fatty acids and lactic acids
by bifidobacteria and lactobacilli provokes other
important associated benefits to human and animal
health, such as the reduction of serum cholesterol, an
increase of calcium and magnesium absorption, the
prevention of colon cancer and the production of B-
vitamins.

Fructans are considered to be prebiotics regardless
of their size and type of linkages. Short-chain fructans
are more convenient substrates for rapid growth of
bifidobacteria [35, 36], whereas branched fructans are
claimed to provide for a long-lasting source of energy
[37]. Although fructans with a low and medium DP
are important primarily because of their functional
properties, they have additional applications in the
food industry. The trisaccharide 1-kestose has a natu-
ral sweet taste, and in a blend with other low calorie
sweeteners it can replace sucrose in certain specific
uses. Inulin recovered from chicory is extensively used
as a food ingredient due to its neutral taste and excellent
characteristics as a fat replacer and dietary fiber.

Levan and inulin produced by bacteria have other
potential food and non-food applications. In the food
industry, these high DP fructans are ideal substrates
for the production of High Fructose Syrups (HFS),
because of the very low glucose content. Levan is
more soluble than inulin and produces viscous solutions
in water. In the industry, this property makes levan
especially attractive as an emulsifier or encapsulating
agent in a wide range of products, including
biodegradable plastics, cosmetics, glues, textile
coatings and detergents. Levan may also have medical
applications. The polymer could substitute dextran
as a blood plasma volume extender, and it was found
to have anti-tumor and immunomodulatory activities
in mice [38, 39].

Enzymes for fructan synthesis
Fructans are synthesized from sucrose by a double-
displacement mechanism that involves the formation
and subsequent hydrolysis of a covalent fructosyl-
enzyme intermediate. The reaction occurs with an
overall retention of the anomeric configuration of the
fructosyl residue. Within the sequence-derived
classification of glycoside hydrolases and trans-
glycosidases, bacterial fructosyltransferases are
classified in family GH68, whereas fungal and plant
fructosyltransferases are grouped together with
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invertase, fructanases and sucrose-6-phosphate
hydrolases in family GH32 (http://afmb.cnrs-mrs.fr/
CAZY). Enzymes from the families GH32 and GH68
comprise clan GH-J and have a five-bladed β-propeller
structure with a fully conserved catalytic triad of acidic
residues placed at the bottom of a deep central cavity.
These residues are involved in the cleavage of the
glycosidic bond of the fructosyl-donor substrate (ex.
sucrose) functioning as nucleophile (Asp), general acid/
base catalyst (Glu) and transition state stabilizer (Asp)
[40-43]. The structural determinants responsible for
the polymerization reaction of microbial and plant
fructosyltransferases remain unknown.

Bacterial fructosyltransferases
In bacteria, fructan synthesis occurs by the action of
a multifunctional enzyme capable of directly converting
sucrose into FOS and high DP fructans. The enzyme
is named inulosucrase (EC 2.4.1.9) when it synthesizes
inulin-type fructans, and levansucrase (EC 2.4.1.10)
when the polymerization product is levan. Many
levansucrases have the dual ability to form β-(2→6)
and β-(2→1) fructosyl-fructose linkages. The majority
of fructan-synthesizing bacteria produce levansucrase.
Only some lactic acid species have been identified to
produce inulosucrase, sometimes in combination with
a levansucrase. Fructosyltransferases from related
genera are rather similar in amino acid sequence, but
the average percentage of sequence identity between
levansucrases from Gram-positive and Gram-negative
bacteria is only 23%.

All bacterial fructosyltransferases catalyze the transfer
of the fructosyl residue from the donor substrate sucrose
to a variety of acceptor substrates, such as water (sucrose
hydrolysis), sucrose (kestose synthesis), fructan (fructan
polymerization), glucose (sucrose synthesis), and
fructose (bifructose synthesis). Depending on the
enzyme origin, there are remarkable differences in the
affinity for sucrose and the other fructosyl acceptors
emerging during the reaction. In general, levansucrases
from Gram-positive bacteria (for instance, Bacillus subtilis
and Streptococcus salivarius) catalyze the formation of
high DP levan without transient accumulation of FOS,
whereas the enzymes from Gram-negative species (for
instance, Gluconacetobacter diazotrophicus and
Zymomonas mobilis) render high levels of β-(2→1)
linked tri- and tetra-saccharide (1-kestose and nystose)
with a lower yield of levan [44-47]. The fact that the
trisaccharide 6-kestose, the initial intermediary fructan
in levan formation, and larger β-(2→6) linked FOS are
not accumulated during sucrose transformation by
levansucrases, indicates that the growing fructan chain
remains bound to the enzyme and is directly elongated
in successive transfructosylation steps. In contrast to
levansucrases, inulosucrase from L. reuteri catalyzes a
non-processive reaction converting sucrose into a range
of inulin-type oligofructans with progressively increased
sizes. These products are released from the enzyme after
every fructosyl transfer [48].

Levasucrases display Michaelis-Menten type of
kinetics for both the hydrolase and polymerase
activities [45, 46, 48]. In contrast, inulosucrases appear
not to follow the Michaelis-Menten reaction kinetics.
The overall activity of L. reuteri inulosucrase rose
proportionally with increasing concentrations of

sucrose, showing the absence of substrate-saturation
kinetics [48]. The ratio of hydrolysis versus
transfructosylation activities of both levansucrases
and inulosucrases is highly dependent on the reaction
conditions. Sucrose hydrolysis occurs optimally at
about 50-60 ºC, but fructan formation is favored at
lower temperatures and with the increase of sucrose
concentration. In the absence of sucrose, levansucrases
and inulosucrases can degrade the synthesized fructans
by releasing the terminal fructose unit in a consecutive
manner. Fructosyltransferases from several Gram-
positive species require the presence of Ca2+  for
optimum activity (for review, [49]). This ion connects
catalytic residues placed distantly in the amino acid
sequence of B. subtilis levansucrase [40]. A similar
fold-stabilizing role is accomplished by a disulfide
bridge in G. diazotrophicus levansucrase, lacking the
Ca2+ binding site like other fructosyltransferases from
Gram-negative bacteria [43].

Fructosyltransferase genes often form part of a
chromosomal operon. Their expression is constitutive
in bacteria that reside in sucrose-containing habitats
[50-52]. In the soil bacterium B. subtilis ,  the
levansucrase gene is strongly controlled by a sucrose-
inducible antitermination mechanism [53].

All known bacterial fructosyltransferases are
extracellular or cell-bound proteins, although they follow
different secretion routes. Levansucrase secretion in
Gram-positive bacteria involves the cleavage of signal-
peptide containing precursors [54-56], whilst the vast
majority of Gram-negative bacteria secrete the enzyme
by a signal-peptide-independent pathway [23, 57-59].
Exceptionally, G. diazotrophicus levansucrase requires
a type-II secretory machinery for translocation across
the outer membrane [60, 61].

Plant fructosyltransferases
Plant fructans are synthesized by the concerted action
of at least two fructosyltransferases exhibiting distinct
fructosyl-donor and fructosyl-acceptor specificities (for
review, [3]). Sucrose:sucrose 1-fructosyltransferase (1-
SST) initiates fructan synthesis by catalyzing the transfer
of the fructosyl residue from one sucrose to another
sucrose molecule, resulting in the formation of the
intermediary trisaccharide 1-kestose and glucose. To a
much lesser extent, 1-SST also uses 1-kestose as the
acceptor substrate to form β-(2→1) linked tetra- and
penta-saccharides, named nystose and fructosylnystose,
respectively. The 1-SST activity is present in all fructan-
producing plants and the encoding gene has been isolated
from different species [62-65]. Other fructosyltransferase
enzymes are required for fructan elongation and
ramification.

In dicots (family Asteraceae) two enzymes are
responsible for fructan synthesis. The enzyme
fructan:fructan 1-fructosyltransferase (1-FFT) elongates
1-kestose and nystose into linear inulins with 10 to 200
fructose residues depending on the plant species [66].
Monocots require additional fructosyltransferase
enzymes to form fructans with different type of linkages.
In the closely-related families Alliaceae and Asparagaceae,
the enzyme fructan:fructan 6G-fructosyltransferase (6G-
FFT) produces neokestose by transferring the terminal
fructose residue of 1-kestose to the glucose residue of
sucrose via a β-(2→6) linkage, although it also has a side
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β-(2→1) activity [18, 67]. The combined action of 1-
SST and 6G-FFT is sufficient for the production of onion
neoinulins, whereas a three-enzyme system (1-SST/1-
FFT/6G-FFT) is present in asparagus [68, 69]. In the
Poaceae family, the distinctive enzyme is sucrose:fructan
6-fructosyltransferase (6-SFT) that produces the
tetrasaccharide bifurcose by coupling a fructose residue
to the internal glucose moiety of 1-kestose via the β-
(2→6) linkage [70]. 6-SFT is also able to synthesize 6-
kestose from sucrose when the substrate 1-kestose is
not available, functioning as a key enzyme for diverting
carbon to fructans in barley leaves [71]. Other fructan-
modifying/polymerizing activities detected in members
of Poaceae are 6G-FFT and 1-FFT. Recently, Lasseur et
al. [72] cloned a 6G-FFT/1-FFT that accounts for the
prevailing neokestose-based fructan synthesis in perennial
ryegrass. The combination of 1-SST, 1-FFT, 6-SFT and
6G-FFT activities should give rise to the complex mixture
of fructans found in Agavaceae.

A remarkable property of plant fructosyltransferases
is their lack of substrate-saturation kinetics. Differing
from invertases that have a Km for sucrose in the
millimolar range, 1-SST enzymes do not show
Michaelis-Menten kinetics and their activity in vitro
progressively increases at least up to 1 M, the maximum
concentration of sucrose usually tested [64, 73, 74].

Each plant fructosyltransferase is encoded by a sin-
gle gene whose expression is controlled at the
transcriptional level. The first enzyme in fructan
synthesis (1-SST) is induced under conditions leading
to a high sucrose concentration, such as high light and
cold or drought stress [75, 76]. A similar expression
profile has been observed in 6-STF, another fructan-
synthesizing enzyme that can use sucrose as a
fructosyl-donor substrate [77]. The presence of 1-
kestose and other short-chain FOS is likely to induce
the expression of the fructan-elongating enzymes.

Enzymes for fructan degradation
A wide range of bacteria and fungi metabolize fructans
as an alternative carbon source when more energetic
sugars (for instance, glucose and sucrose) are limiting
or exhausted. Microbial levan and inulin are hydrolyzed
by the action of extracellular endo and exofructanases.
Most levanases characterized so far function as fructose
or levanbiose-producing exohydrolases. Fructose-
releasing levanases have been identified in the species
Bacillus subtilis, Actinomyces viscosus, Bacteroides
fragilis, Paenibacillus polymyxa, Bacillus stearo-
thermophilus, and Gluconacetobacter diazotrophicus
[78-82]. In addition to levan, these enzymes commonly
hydrolyze inulin, raffinose and sucrose, although with
different substrate preferences. In all cases the enzyme
attacks the substrate molecule from the fructose end
and releases fructose as the sole reaction product. By
contrast, levanbiose-producing levanases split levan
mostly into levanbiose and hardly hydrolyze the β-
(2→1) linkages of inulin, raffinose, or sucrose [83-85].
Endolevanases and endoinulinases have absolute
substrate specificity for levan and inulin, respectively.
These enzymes split at random the internal β-linkages
of the polymer yielding a mixture of oligofructans of
different sizes [86]. Transcriptional studies have
revealed that the expression of bacterial fructanase genes
has basically two levels of control:

1. Specific induction by low concentrations of the
degradation product of levan or inulin.

2. Repression by glucose as a global regulation of
cell catabolism [53, 87, 88].

In plants, the breakdown of fructans is accomplished
by a complex of fructan exohydrolases (FEHs). Two
isoforms of 1-FEH have been identified to degrade
inulin in chicory roots [27]. More recently, three
cDNAs from wheat encoding two 1-FEHs and one
6&1-FEH were associated with the breakdown of
branched graminan-type fructans containing both β-
(2→1) or β-(2→6) fructosyl linkages [89]. The 6&1-
FEH type of enzyme in wheat crowns was suggested
to fulfill a crucial role in the modulation of fructan
content and DP under cold stress.

The expression of FEH genes is mainly induced
after defoliation or by freezing temperature [90-92].
Hormones like gibberellin and ABA have been found
to be important for FEH regulation [93]. Plant FEHs,
in contrast to microbial exofructanases, are unable to
hydrolyze sucrose. This sugar is, otherwise, a strong
competitive inhibitor of FEH enzymes and may
regulate their activity in vivo avoiding fructan
hydrolysis when more energetic substrates are
available.

Surprisingly, functional 6-FEH genes have been
isolated from the non-fructan plants Arabidopsis
thaliana and sugar beet [94, 95]. Since no endogenous
substrates are present in these plants, it was proposed
that these enzymes may have a defense-related
function against pathogenic or endophytic bacteria,
which produce levan as a virulent factor [96].

Evolution
Fructosyltransferases and fructanases are evolutionarily,
structurally, and mechanistically related to invertases.
In bacteria, the sequence similarities between fructan-
synthesizing enzymes (levansucrase and inulosucrase)
and invertases are mainly restricted to few specific
domains located at the active site. By contrast, fructan-
degrading enzymes (levanase and inulinase) and
invertases share extensive similarities at their amino
acid sequences and thus have a closer evolutionary
relationship. Considering that many fructan-producing
bacteria do not have an invertase, it is reasonable to
think that fructosyltransferase genes have been primarily
transferred between different species sharing a common
habitat. The genes encoding the enzymes for fructan
synthesis and degradation form an operon in some
species (for instance, G. diazotrophicus) [82], suggesting
the occurrence of the dual acquisition by a single hori-
zontal transfer event.

In higher plants, invertase is ubiquitous.
Phylogenetic studies based on the comparison of
protein sequences have shown that invertases and
fructan-metabolizing enzymes from one species or
family are often more closely related than enzymes
that catalyze the same reaction but originate from
different species or families. It is suggested that
fructosyltransferases arose by few mutations of acid
vacuolar invertases, whereas fructan exohydrolases
(FEHs) evolved from cell-wall invertases that later
gained a vacuolar targeting signal and a low isoelectric
point [96, 97]. Recently, Ritsema et al. [98] succeeded
increasing the 1-kestose synthesis capability of a
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vacuolar invertase by exchanging a strictly conserved
Trp in the sucrose-binding box with another aromatic
residue. Such a replacement corresponds with a na-
tural variation and might represent an initial
mutational step in the evolution of vacuolar invertases
to fructosyltransferases.

Current production systems
Meiji Seika Kaisha Ltd. started the commercial
production of fructans about twenty years ago. This
Japanese company produces β-(2→1) linked FOS
(DP 3 to 5) from sucrose in a continuous process
by using a biocatalyzer composed of Aspergillus
niger cells entrapped in calcium alginate gels. With
the same purpose, other Asian companies currently
use different fungi, for instance Aureobasidium
pullulans. All fungal fructosyltransferases catalyze
both transfructosylation and hydrolysis reactions
although at different rates. Regardless the enzyme
origin, the reaction product obtained is a blend of
FOS, sucrose, glucose, and fructose. The reaction
is started with sucrose at 60-70% (w/v), which is
initially transformed to trisaccharide 1-kestose and
monosaccharides glucose and fructose. At the end
of the reaction, the maximum FOS content can reach
55-60% (w/v) with a shift from DP 3 to DP 4-5.
The next steps of chromatographic purification,
concentration and sterilization are performed to
obtain an enriched FOS product that is sold as a
syrup, a white powder or crystals. At present, Meiji
Seika Kaisha sends to the market about 4000 tons
of FOS per year. The range of commercial FOS
products covers from concentrated non-purified
syrups to crystalline 1-kestose.

The worldwide production of inulin is basically
accomplished by three companies located in Western
Europe. Linear inulin with DP of 10 to 30 is
commercially recovered from chicory roots where the
fructan content can reach about 20% of the fresh weight
(about 80% of the dry weight). The first processing
step is an extraction with hot water followed by a
filtration to eliminate colloidal materials. The resulting
liquid (dark and bitter) is further refined using ion
exchange resins. Since inulin cannot be crystallised
the final step is always spray drying to obtain a product
in the form of a powder. The extracted inulin can be
subjected to complete or partial hydrolysis to produ-
ce fructose or oligofructans, which are sold as syrups.
Chicory is a low-yielding crop, in agronomic terms,
and expresses exohydrolases that can severely degra-
de the inulin stored after harvesting the roots.

No commercially attractive technology is currently
available for the industrial production of branched
fructans with a high DP or various types of linkages.
The enzymatic conversion of sucrose to levan using
bacterial levansucrases in industrial reactors is highly
expensive. The elevated viscosity of the reaction
mixtures and the fact that the synthesized polymer
remains attached to the enzyme hinders the
implementation of continuous production systems.
On the other hand, natural crops like onion, asparagus,
agaves and temperate grasses appear not to fit the
agronomic characteristics required for the cost-
effective production of neofructans, phleins and
graminans.

Transgenic plants
From the mid nineties, several groups motivated by
academic and biotechnological reasons have
transferred bacterial and plant fructosyltransferase
genes into different plant species, most of which
do not naturally produce fructans. The synthesis
of the transgenic fructan as an additional sucrose
sink in leaves and reserve organs offered the
opportunity for accomplishing original carbon
partitioning studies. From an applied viewpoint,
transgenesis has been focused on to improve crop
resistance to environmental stress, as well as for
creating novel sources for the cost-effective
production and commercialization of different
fructans.

Plants transformed with bacterial
fructosyltransferase genes
Levansucrase genes from different bacteria have been
placed under the control of constitutive or organ-
specific promoters and engineered for protein targeting
to different subcellular plant locations: cytoplasm,
apoplasm, vacuole, and plastid (Table 1). From the
first transgenic experiments, the vacuole was focused
as the most compatible compartment to achieve high
levan yields. In this compartment the substrate sucrose
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Table 1. Fructan accumulation in plants transformed with bacterial levansucrase 

Promoter: 35S, Cauliflower mosaic virus 35S; B33, Potato tuber specific; Zein, Maize seed specific; M 2-2, 
Maize inducible; Ubi, Maize ubiquitin 1.  
Vacuolar targeting signal: CPY, yeast carboxipeptidase Y; NTRP, N-terminal region of patatin (92 amino 
acids); lectin, Barley lectin; sporamin, Sweet potato sporamin. 
Plastid targeting signal: ferredoxin, Silene pratensis  ferredoxin.  
Gene source: Bs, Bacillus subtilis; Ba, Bacillus amyloliquefaciens; Ea, Erwinia amylovora. 
*Adapted from Cairns [110]. Where several values were reported, the maximum is presented. Fructan 
concentrations are expressed on a fresh mass basis. 
 

Host Organ / putative 
compartment 

Promoter / targeting 
signal / gene source 

Endpoint fructan* 
(mg g-1) 

Reference 

Tobacco Leaf /  vacuole 35S / CPY / Bs 2.8 [100]  

Potato 
Leaf /  vacuole 

Tuber /  vacuole 
35S / CPY / Bs 
35S / CPY / Bs 

160 
10 [101] 

Tobacco Leaf / vacuole 35S / CPY / Bs 0.35 [30] 

Potato 
Leaf / vacuole 

Tuber / vacuole 
35S / CPY / Bs 
35S / CPY / Bs 

5 
11 

[102] 

Potato Tuber / vacuole 
Tuber / apoplasm 

B33 /  NTRP / Ea 
B33 /  own signal  / Ea 

28 
17 

[103] 

Maize 
Seed / cytoplasm 
Seed / vacuole 
Seed / vacuole 

Zein / no signal / Ba 
Zein / lectin / Ba 

Zein / sporamin / Ba 

18 
9 
9 

[104] 

Tobacco 
Potato 

Leaf / cytoplasm 
Tuber / cytoplasm 

M 2-2 / no signal / Ba 
B33 / no signal / Ba 

4 
10 

[105] 

Tobacco Leaf / vacuole 35S / sporamin / Bs 6 [106] 

Sugar beet Leaf / vacuole 35S / CPY / Bs 1 [107] 

Tobacco 
Potato 

Leaf / plastid 
Tuber / plastid 

35S / ferredoxin / Bs 
35S / ferredoxin / Bs 

20 
66 

[108] 

Ryegrass Leaf / vacuole 
Leaf / vacuole 

Ubi / sporamin / Bs 
Ubi / CPY / Bs 

< 0.1 [109] 
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would be constantly available and the synthesized
polymer would remain sequestered, minimizing its
potential disruptive effects. On the other hand,
recombinant experiments in yeast suggest that the
potential occurrence of glycosylation during the transit
to the vacuole is not likely to alter the catalytic per-
formance of levansucrase [99]. However, in many ca-
ses the attempted vacuolar targeting of the bacterial
enzyme has been unsuccessful. Pilon-Smits et al. [102]
showed that levan was present at the cell perimeter in
leaves of potatoes transformed with the Erwinia
amylovora levansucrase fused to a yeast CPY vacuolar-
targeting sequence. In tobacco transformants, the
vacuolar-targeting signal of the sweet potato sporamin
failed to translocate the Bacillus subtilis  levansucrase
beyond the endomembrane system [106]. Rober et al.
[103] succeeded in producing levan in the vacuoles of
the potato tubers by using the patatin signal sequence;
although Cairns [110] argued that the polymer was
also associated to the cell wall. Using a seed-specific
promoter and the vacuolar-targeting sequence of either
the sweet potato sporamin or a barley lectin, Caimi et al.
[104] observed that the maize seeds developed
normally despite the accumulation of levan. The
synthesis of levan in the cytoplasm was lethal in
tobacco, potato and maize [104, 105].

In terms of endpoint concentrations of levan, reports
varied between 0.04 and 160 mg g -1, (0.02-80% of dry
biomass) with the majority lying between 5-20 mg g -1,
(2.5-10% of dry biomass) [110]. The maximum value
was obtained for leaves of plants grown in vitro,
presumably with sucrose as the exogenous carbon source
[101]. For greenhouse plants the highest levan production
(66 mg g -1 ) was surprisingly achieved in tubers of
potatoes transformed with the B. subtilis levansucrase
fused to a ferredoxin chloroplast targeting sequence [108].
This value is lower than the natural inulin accumulation
in tubers of H. tuberosus (150 mg g -1) [111].

The primary explanation for the relatively low rates
of levan accumulation in transgenic crops is the low
expression level of the levansucrase gene, based on
the fact that the transgene product, regardless of its
origin, has not been detected in western blot
experiments. On the other hand, it is speculated that
higher rates of levan accumulation, even in the vacuoles,
might cause cell toxicity and prevent the recovery of
high-expressing transformants.

Levan accumulation in transgenic tobacco and sugar
beet increased drought tolerance [30,107], suggesting
that the novel trait could be useful for crop
improvement. However, in a general view, plant
expressing bacterial fructosyltransferase genes
exhibited aberrant phenotypes such as stunting and
leaf bleaching. In transgenic potato, there was a
reduction in the number and weight of tubers, as well
as in their starch content [101, 103, 108].

Plants transformed with plant
fructosyltransferase genes
Plant fructosyltransferase genes were cloned and used
for transformation later than their bacterial
counterparts. The transgenic production of plant-
derived fructans has two main reasons:

1. The study of the catalyzing specificities of
distinctive fructan biosynthesis pathways.

2. The creation of novel fructan-producing crops with
biotechnological interest.

In this sense, the cloned fructan enzymes of a
defined species were constitutively expressed in the
vacuoles of a non-fructan host (for instance: petunia,
tobacco, potato and sugar beet) or used to modify the
inulin pattern of chicory (Table 2). The 1-SST and 1-
FFT genes from Helianthus tuberosus were introduced
alone or combined into petunia [62]. The 1-SST
transformants accumulated mainly 1-kestose and
nystose, whilst the plants expressing the two genes
yielded linear inulin chains of 9-40 fructose units in
yellow senescent leaves. Similarly, the independent
(1-SST) and combined (1-SST/1-FFT) expression of
the Cinara scolymus genes in potato tubers resulted
in the accumulation of short-chain FOS and inulin
(DP up to 40), respectively [112]. These findings
confirm the two-enzyme model proposed by Edelman
and Jefford [115] for the synthesis of the linear β-
(2→1) linked fructans observed in members of
Asterales. However, the ability of 1-SST to produce
oligomers with a DP higher than 3 contradicts the
clear distinction of the fructosyltransferase activities
established in this model.

The 6-SFT gene from barley was expressed in
tobacco and chicory plants [113]. As predicted, with
sucrose as the sole substrate, the transgenic tobacco
plants accumulated low amounts of 6-kestose and a
series of unbranched fructans of the phlein type. In
addition to the endogenous inulin, the chicory
transformants produced traces of the tetrasaccharide
bifurcose and graminan-type fructans in illuminated
leaves, but not in roots. In a similar approach, the
6G-FFT gene from onion was expressed in tobacco
and chicory [18]. Due to the enzyme requirement
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Table 2. Fructan accumulation in plants transformed with plant fructosyltransferases 

Promoter: 35S, Cauliflower mosaic virus 35S; B33, Potato tuber specific; Ubi, Arabidopsis thaliana  
ubiquitin 3 
Gene source: Cs, Cynara scolymus; Hv, Hordeum vulgare; Ac, Allium cepa; Ht, Helianthus tuberosus. 
n.d: not determined  
*Adapted from Cairns [110]. Where several values were reported, the maximum is presented. Fructan 
concentrations are expressed on a fresh mass basis. 

Host Organ Promoter / Gene(s) 
and source 

Endpoint fructan* 
(mg g-1) 

Reference 

Potato Tuber B33 / 1SST Cs 9.7 [112] 

Chicory 
Tobacco 

 

Leaf 
Leaf 
Root 

35S / 6SFT Hv 
35S / 6SFT Hv 
35S / 6SFT Hv 

Trace 
0.06 
0.6 

[113] 

Chicory Leaf 35S / 6G-FFT Ac n.d [18] 

Sugar beet 
Leaf 
 Root 

35S / 1SST Ht 
35S / 1SST Ht 

0.6 
62.3 [114] 

Petunia 
Leaf 
Leaf 

35S / 1SST Ht 
35S / 1SST+1FFT Ht  

0.47 
0.08 [62] 

Potato Tuber Leaf 
Tuber 

35S / 1SST Cs 
35S / 1SST Cs 

35S / 1SST+1FFT Cs 

4.9 
0.1 
6.1 

[10] 

Sugar beet Root Ubi / 1SST+6G-FFT Ac 0.1 [37] 
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for 1-kestose as a donor substrate, the tobacco
extracts were incubated in vitro with the trisaccharide
resulting in the formation of neokestose and low DP
fructans of the inulin neoseries. The illuminated
leaves of the transgenic chicory produced the
endogenous inulin and 6G-linked fructans (neoinulins)
with DP from 3 to 14.

In an attempt to create a novel source for the
cost-effective production of commercial FOS,
Sévenier et al. [114] constitutively expressed the
H. tuberosus 1-SST gene in sugar beet. In the taproot
of a greenhouse-grown transformant, the concen-
tration of GF2, GF3, and GF4 reached up to 73.8,
33.7 and 5.7 µmol g -1 (fresh weight), respectively.
The sum of these values represents more than 40%
of the taproot dry weight. Over 90% of the stored
sucrose was channeled into fructan synthesis, but
the process was accompanied by a slight decrease
(8%, expressed in hexose equivalents) in the total
content of soluble carbohydrates. More recently,
Weyens et al.  [37] were able to produce inulin
neoseries (DP ranging 3-5) in sugar beet by the
constitutive expression of the onion 1-SST and 6G-
FFT genes. The content of the fructans accumulated
in the transgenic taproots reached about 90 mg g -1

(fresh weight), without the loss of overall storage
carbohydrates.

With the exception of the fructans accumulated in
taproots of the transformed sugar beet plants [37, 114],
the endpoint concentrations of transgenic fructans were
generally below 10 mg g -1, a value similar to that of the
levan transgenics but lower than the maxima found for
endogenous reserve accumulation (60-150 mg g-1), as
reviewed by Cairns [110]. A plausible cause for the limited
fructan accumulation observed in crops other than sugar
beet is the low sucrose affinity (apparent Km >250 mM)
of plant fructosyltransferases, contrasting with the
substrate competitor invertases (Km <50 mM). The
sucrose concentration in the sugar beet vacuoles may
reach 500 mM, but in other transformed plants it is
below 40 mM [110]. Thus, the fructan enzymes were
severely substrate-limited in the latter trans-formants.
Another potential factor that could affect fructan
accumulation is the degradation of 1-kestose and other
short-chain FOS by the endogenous invertases.

Unlike levan-producing transgenics, the plants
transformed with plant-derived fructosyltransferase
genes showed neither phenotypic aberrations nor a
reduction of agronomic yield. The conversion of highly
productive crops that naturally accumulate sucrose,
such as sugar beet and sugar cane, into fructan crops
emerges as an attractive alternative for a more cost-
effective production and wider commercialization of
these increasingly demanded prebiotics.
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